Parentela

Parentela

Blog: genetica forense y probabilidad

Familias y mucho más
¿No os acordáis? sen^2 x + cos^2 x = 1 :))))))

Significado del LR - Parte 2

Significado del LRPostado por Lourdes Prieto Solla mié, enero 31, 2018 13:25:18

Algunos os preguntaréis cómo hemos calculado las probabilidades a posteriori en el comentario anterior. Pues simplemente hemos aplicado Bayes, para k hipótesis y con cualquier probabilidad a priori (En: “Relationship inference with Familias and R”, Chapter 2, Egeland et al., 2016):

Horror!! Vaya fórmula! Pero no es para tanto, sólo tenemos que multiplicar cada LR por cada prior (columna “PRODUCTO” del Excel que veréis abajo), sumar los resultados de esta multiplicación (casilla “denominador”), y luego dividir cada producto por el denominador (columna “POSTERIOR”). Mejor lo vemos con el ejemplo:

a) Si H1, H2 y H3 son igualmente probables a priori (1/3 cada una), obtenemos:

Si queréis ver un ejemplo real en Familias, podéis descargaros el archivo que ha preparado Thore. He alucinado con este archivo porque Thore ha definido las persons y las hipótesis en español!! Cada vez tiene menos de nórdico y más de latino… está totalmente mimetizado con nosotrosJ))Bueno, el archivo os lo podéis descargar en este link: http://familias.name/blog/blog-dormant.fam (usando los comandos Control+s, una vez que estéis dentro del link). Obviamente las cifras son diferentes, pero la idea es la misma. En este archivo podéis ver cómo definir H3 (gemelos) en Familias (seleccionando “direct match” en el pedigrí). Y además podéis comprobar que el LR de H3 vs H2 es igual al valor de 1/RMP que obtenemos en la ventana “Case DNA data” cuando hacemos click en “Compare DNA” (como ya discutimos en la validación del cálculo de RMP, post del 10/01/2018)

b) Si H1 y H2 son a priori más probables que H3, obtenemos:

Que es justo lo que veíamos en las diapos de Thore.

Pero lo más importante de todo esto es destacar lo que hemos aprendido con este ejemplo:

a) Como ya vimos, el LR no nos dice si una hipótesis es cierta o no, más bien, si los resultados apoyan más una hipótesis que otra (y ambas hipótesis podrían no ser ciertas!!)

b) Que en nuestros casos reales, sólo debemos calcular probabilidades a posteriori si nuestras hipótesis son exhaustivas, es decir, si conocemos y tenemos en cuenta TODAS las hipótesis relevantes. Ya hemos visto con este ejemplo que existe la posibilidad de que los resultados de ADN apoyen fuertemente una hipótesis que tenía una probabilidad a priori extremadamente baja (H3, en el ejemplo b, con prior = 10^(-6))

La mayoría de las veces sí que conocemos las hipótesis relevantes, por el contexto del caso. Pero ¿qué hacemos entonces si nuestras hipótesis no son exhaustivas? Pues podemos calcular posteriors en forma de apuesta (posterior odds), pero no probabilidades a posteriori.

Si queréis ver cómo, darme un tiempecito y preparo otro post!


02/02/2018
Añado aquí unas imágenes que me ha mandado Thore respecto a este post. Se trata del uso de una página web en la que podéis calcular directamente las probabilidades a posteriori sin necesitad del Excel anterior. Hay de todo en Internet!!

La única precaución que hay que tener es que debemos introducir en la página la verosimilitud de cada hipótesis, no el LR. Aquí veis en ejemplo de Thore (marcador D3 del archivo de Familias anteriro: http://familias.name/blog/blog-dormant.fam)


Y una vez calculado el likelihood, ya podéis meter los datos (prior y likelihood) en la web http://psych.fullerton.edu/mbirnbaum/bayes/BayesCalc3.htm para calcular la probabilidad a posteriori:


Very useful Thore! Many thanks!




Fill in only if you are not real





Se permiten las siguientes etiquetas XHTML: <b>, <br/>, <em>, <i>, <strong>, <u>. No se permiten estilos CSS y Javascript.
Postado por Thore mié, enero 31, 2018 19:32:00

Very good - I look forward to continuation announced!